SUFFICIENT CONDITIONS FOR AN EXTREMUM IN EIGENVALUE OPTIMIZATION PROBLEMS*

A.S. BRATUS and A.P. SEIRANYAN

Problems of maximizing the minimum eigenvalue of selfadjoint matrices and differential operators are considered. These problems arise when optimizing the critical buckling force or the fundamental frequency of the natrual vibrations of elastic structures /1-4/. It has been shown $/ 5-10 /$ that the extremal eigenvalue turns out to be multiple in a number of cases. The multiplicity of the critical load in maximization problems for the critical buckling force denotes the presence of several buckling modes for this load.

Sufficient conditions for a local extremum for single and double eigenvalues are obtained for discrete and continuous systems. In the continuous case, the sufficient conditions for an extremum are derived using the example of a rod buckling problem. The conditions obtained are constructive in nature and can be utilized in different eigenvalue optimization problems.

1. Consider the generalized eigenvalue problem

$$
\begin{equation*}
A(h) u=\lambda B(h) u \tag{1.1}
\end{equation*}
$$

Here $A(h)$ and $B(h)$ are positive-definite symetric $m \times m$ matrices with coefficients $a_{i j}(h)$ and $b_{i j}(h)$, respectively, that depend continuously on the components of the parameter vector h of dimensions n, while u is a vector of dimensions m, and λ is the eigenvalue.

Problem (1.1) has a complete system of eigenvectors $u^{i}(i \neq 1,2, \ldots, m$) and the eigenvalue sequence $0<\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{m}$, where we assume ($\delta_{i j}$ is the Kronecker delta)

$$
\begin{equation*}
\left(u^{i}, \quad B(h) u^{j}\right)=\delta_{i j} \tag{1.2}
\end{equation*}
$$

Here and henceforth, parentheses denote the scalar product of vectors.
We pose the following problem: it is required to find the parameter vector $h=\left(h_{1}, \ldots\right.$. h_{n}) for which the minimum eigennumber λ_{1} of problem (1.1) reaches a maximum value under the condition

$$
\begin{equation*}
F(h)=0 \tag{1.3}
\end{equation*}
$$

where $F(h)$ is a certain fixed linear function of the vector argument h.
Let λ_{1} and $u^{i}(i=1,2, \ldots, m)$ be the eigennumbers and eigenvectors of problem (1.1) calculated for a certain h. We shall first assume that λ_{i} is a single eigenvalue. We will apply the result of analytic perturbation of the symmetric operator spectrum /11/. We give the vector h an increment in the form of the vector $\varepsilon k, k=\left(k_{1}, \ldots, k_{n}\right)$, where ε is a small positive number. It follows from (1.3) that the vector k should satisfy the condition

$$
\begin{equation*}
\left(f^{\circ}, k\right)=0, \quad f^{\circ}=\nabla F \tag{1.4}
\end{equation*}
$$

where f° is a fixed vector giving the gradient of the function $F(h)$. As a result of perturbation of the parameter vector, the eignnumber λ_{1} and the eigenvector u^{\prime} receive increments which can be written in the form

$$
u=u^{1}+e \nu^{1}+\varepsilon^{2} v^{2}+o\left(\varepsilon^{2}\right), \quad \lambda=\lambda_{1}+\varepsilon \mu+\varepsilon^{2} \eta+o\left(\varepsilon^{2}\right)
$$

Substituting the expansions obtained into (1.1) and collecting terms of the zeroth, first, and second powers of ε, we obtain

$$
\begin{align*}
& A(h) u^{1}=\lambda_{1} B(h) u^{1} \tag{1.5}\\
& A_{1}(h, k) u^{1}+A(h) v^{1}=\lambda_{1} B(h) v^{1}+\mu B(h) u^{1}+\lambda_{1} B_{1}(h, k) u^{1} \tag{1.6}\\
& A_{2}(h, k) u^{1}+A_{1}(h, k) v^{1}+A(h) v^{2}=\lambda_{1} B(h) v^{2}+ \tag{1.7}\\
& \mu B(h) v^{1}+\mu B_{1}(h, k) u^{1}+\lambda_{1} B_{1}(h, k) v^{1}+\lambda_{1} B_{2}(h, k) u^{1}+\eta B(h) u^{1}
\end{align*}
$$

Here $A_{1}(h, k), B_{1}(h, k)$ are matrices with the components ($\left.\nabla a_{i j}, k\right)$ and $\left(\nabla b_{i j}, k\right)(i, j=1,2$, ..., m), respectively, where

[^0]$$
\nabla a_{i j}=\left(\frac{\partial a_{i j}}{\partial h_{1}}, \ldots, \frac{\partial a_{i j}}{\partial h_{n}}\right)(h), \quad \nabla b_{i j}=\left(\frac{\partial b_{i j}}{\partial h_{1}}, \ldots, \frac{\partial b_{i j}}{\partial h_{n}}\right)(h)
$$
$A_{2}(h, k)$ and $B_{2}(h, k)$ are matrices with the components
$$
\frac{1}{2} \sum_{s, i=1}^{n} \frac{\partial^{2} a_{i j}}{\partial h_{s} \partial h_{t}}(h) k_{s} k_{t}, \quad \frac{1}{2} \sum_{s, i=1}^{n} \frac{\partial^{2} b_{i j}}{\partial h_{s} \partial h_{i}}(h) k_{s} h_{t}, \quad i, j=1,2, \ldots, m
$$

It is convenient to introduce the following notation (f^{l} are vectors of dimensions n)

$$
\begin{align*}
& C(h)=A(h)-\lambda_{1} B(h) \tag{1.8}\\
& C_{i}(h, k)=A_{i}(h, k)-\lambda_{1} B_{i}(h, k), \quad i=1,2 \\
& f^{l}=\sum_{i, j=1}^{m} u_{i}{ }^{1} u_{j}{ }^{2}\left(\nabla a_{i j}-\lambda_{1} \nabla b_{i j}\right)(h), \quad l=1, \ldots, m
\end{align*}
$$

Here u_{j}^{l} are components of the eigenvectors $u^{l}, j, l=1,2, \ldots, m$. We note that the matrices $C_{i}, A_{i}, B_{i}(i=1,2)$, and C are symmetric because of the symmetry of the matrices A and B.

Multiplying (1.6) scalarly by the vector u^{\prime}, using the symmetry of the matrices $A(h)$ and $B(h)$, conditions (1.2) and (1.5), we obtain

$$
\mu=\left(C_{1}(h, \quad k) u^{1}, \quad u^{1}\right)=\left(f^{1}, \quad k\right)
$$

If h is a vector realizing the solution of the above optimization problem, it is necessary that for any vector $k=\left(k_{1}, \ldots, k_{n}\right)$, the equation $\mu=0$ should be satisfied for $\left(f^{\circ}, k\right)=0$. Hence we obtain

$$
\begin{equation*}
f^{1}=d f^{c} \tag{1.9}
\end{equation*}
$$

with a certain constant d which yields the necessary extremum condition in the problem under consideration for maximizing the least eigenvalue λ_{1}.

We assume that condition (1.9) is satisfied, and, using the equation $\mu=0$, we can write (1.6) in the form

$$
\begin{equation*}
C(h) v^{1}=-C_{\mathrm{y}}(h, k) u^{1} \tag{1.10}
\end{equation*}
$$

where the matrix C_{1} is defined by (1.8).
The vector v^{1} can be represented in the form of a linear combination of the vectors $u^{l}(l=$ 1, ..., m), i.e.

$$
\begin{equation*}
v^{1}=c_{1} u^{1}+\ldots+c_{m} u^{m} \tag{1.11}
\end{equation*}
$$

Substituting this expansion into (1.10) may successively multiplying it scalarly by the vector u^{l}, taking account of (1.5) and the notation (1.8), we obtain

$$
\begin{equation*}
v^{1}=c_{1} u^{l}-\sum_{l=2}^{m} \frac{\left(f^{l}, k\right)}{\lambda_{l}-\lambda_{1}} u^{l} \tag{1.12}
\end{equation*}
$$

The constant c_{1} is determined from the normalization condition and does not influence the subsequent calculations.

We multiply (1.7) scalarly by the vector u^{1} by using (1.5), the equation $\mu=0$ and condition (1.2). Finally, we obtain an expression for the second correction to the eigenvalue

$$
\eta=\left(C_{2}(h, k) u^{1}, u^{1}\right)+\left(C_{1}(h, k) u^{1}, v^{1}\right)
$$

where C_{1} and C_{2} are defined in (1.8). We introduce the notation

$$
d_{s t}=\frac{1}{2} \sum_{i, j=1}^{m} u_{i}^{1} u_{j}^{1}\left(\frac{\partial^{2} a_{i j}}{\partial h_{s} \partial h_{t}}-\lambda_{1} \frac{\partial^{2} b_{i j}}{\partial h_{s} \partial h_{t}}\right)(h)
$$

and denote by $D(h)$ the matrix with components $d_{s t} ; s, t=1, \ldots, n$. From (1.12), the stationarity condition $\left(f^{1}, k\right)=0$, and the notation (1.8) introduced above, we have

$$
\begin{equation*}
\eta=(D(h) k, k)-\sum_{l=2}^{m} \frac{\left(f^{l}, k\right)^{2}}{\lambda_{l}-\lambda_{1}} \tag{1.13}
\end{equation*}
$$

Expression (1.13) determines the magnitude of the second variation of the eigenvalue λ_{1} for values of the parameter vector h satisfying the stationarity condition (1.9).

Assertion 2. The sufficient condition for a local extremum of the stationary value of the vector h is expressed by the inequality $\eta(h, k)<0$ for any variations $k=\left(k_{1}, \ldots, k_{n}\right)$ satisfying (1.4).

This condition is equivalent to the condition of negative definiteness of the form (1.13) considered as a quadratic form of the components of the vector k on the hyperplane $\left(f^{\circ}, k\right)=0$.

This condition of negative definiteness of the matrix $D(h)$ is obviously sufficient for the optimality of the stationary vector h, since the second term in (l.13) is always monpositive because $\lambda_{1}<\lambda_{1}(l=2,3, \ldots m)$.

We will examine the special case when the dependence of the matrices A and B of problem (1.1) on the vector component h is linear, and hence D Im 0 . If the rank r of the vector system $\left\{f^{f}\right)(l=1,2, \ldots, n)$ equals the dimensions of the vector h, i.e., $r=n$ (which is possibie for $m \geqslant n$), then $\eta<0$ for any non-zero vectors k. Indeed, in this case $\eta \leqslant 0$ and $\eta=0$ only for $\left(f^{l}, k\right)=0(l=1,2, \ldots, m)$. Because $r=n$, it hence follows that $k \equiv 0$. We note that because of conditions (1.4) and (1.9), the vector k should satisfy the condition ($\left.p^{k}, k\right)=0$. If $r<n$, then non-zero vectors k always exist such that $\left(f^{i}, k\right)=0(l=1,2, \ldots, m)$. In this case the question of an extremum is solved by including higher-order variations. Therefore, for a linear dependence of the matrices A and B on the vector components h, the condition $r=n$ is sufficient for the optimality of the stationary vector h.
2. We will examine the case when the double eigenvalue $\lambda_{1}=\lambda_{2}<\lambda_{3} \leqslant \lambda_{4} \ldots$ corresponds to the vector h realizing the solution of the problem of maximizing the minimum eigenvalue of problem (1.1). As in Sect.1, it is assumed that the orthogonal eigenvectors $u^{i}(i=1,2, \ldots$, m) normalized in the sense of (1.2) correspond to the eigenvalues λ_{1}. Any linear combination of the vectors u^{i} and u^{2}

$$
\begin{equation*}
u^{0}=\gamma_{1} u^{1}+\gamma_{2} u^{2}, \quad \gamma_{1}^{2}+\gamma_{2}^{2} \neq 0 \tag{2.1}
\end{equation*}
$$

is also an eigenvector corresponding to the double value $\lambda_{1}=\lambda_{2}$.
we give the vector h an increment εk, where e is a small positive number, and we calculate the increment of the eigenvalue λ_{1}. Using the expansion $\lambda=\lambda_{1}+\varepsilon \mu+\varepsilon^{2} \eta+o\left(\varepsilon^{2}\right)$ and $u=u^{0}+8 v^{2}+s^{2} v^{2}+o\left(\varepsilon^{2}\right)$, in this case /LI/, we arrive at (1.5)-(1.7) with the sole difference that instead of u^{1} we will have $u^{0}=\gamma_{1} u^{1}+\gamma_{3} u^{2}$. The constants γ_{1} and γ_{2} are also to be determined form the equations of the perturbation method.

Multiplying (1.6) scalarly by u^{1} and u^{2}, we obtain a system of linear homogeneous equations in γ_{1} and γ_{2}. Equating the determinant of this system to zero, we arrive at a quadratic equation to determine μ

$$
\begin{align*}
& \mu^{2}-\left(\alpha_{11}+\alpha_{23}\right) \mu+\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right)=0 \tag{2.2}\\
& \alpha_{i j}=\left(C_{1}\left(h, \quad \text { b) } u^{i}, u^{j}\right), \quad i, j=1, \quad 2\right.
\end{align*}
$$

where the matrix $C_{i}(h, k)$ is determined by the second equation in (1.8). Because of the symmetry in the matrix C_{1} the coefficient $\alpha_{12}=\alpha_{21}$, which ensures that the roots of (2.2) wili be real. We introduce the n-dimensional vectors

$$
\begin{equation*}
f_{s}^{t}=\sum_{i, j=1}^{m} u_{i}{ }^{i} u_{j}{ }^{s}\left(\nabla a_{i j}-\lambda_{1} \nabla b_{i j}\right)(h), \quad l, s=1, \ldots+m \tag{2.3}
\end{equation*}
$$

We note that $f_{t}^{l}=f_{i}^{*}$ because of the symmetry of $a_{i j}, b_{i j}$. Taking this and the notation (1.8) into account, we write $\alpha_{i,}$ in the form

$$
\begin{equation*}
a_{i j}=\left(f_{j}^{i}, k\right), i, j=1,2 \tag{2,4}
\end{equation*}
$$

If the vector h realizes the solution of the optimization problem, then $\mu_{1} \mu_{2} \leqslant 0$ is necessary, where μ_{1} and μ_{2} are the roots of the quadratic equation (2.2). This means that the minimum eigenvalue λ_{1} is maximum, and allowable variations of $e k$ do not result in its enlargement /12/.

Using (2.2) and (2.4) we give the condition $\mu_{1} \mu_{2} \leqslant 0$ the form

$$
\begin{equation*}
L(h, k)=\left(f_{1}^{2}, k\right)^{2}-\left(f_{1}^{1}{ }^{1} k\right)\left(f_{2}^{2}, k\right) \geqslant 0 \tag{2.5}
\end{equation*}
$$

for any k satisfying the isoverimetric condition (1.4). As is shown in $/ 12 /$, the linear dependence of the vectors

$$
\begin{equation*}
\xi_{0} f^{\prime}+\xi_{1} f_{1}^{1}+\xi_{2} f_{2}^{2}+\xi_{3} f_{1}^{2}=0 \tag{2.6}
\end{equation*}
$$

follows from (2.5) and (1.4), where $\xi_{i}(i=0,1,2,3)$ are constants satisfying the inequality

$$
\begin{equation*}
\xi_{1} \xi_{2} \quad 1 / 4 \xi_{3}{ }^{2} \tag{2.7}
\end{equation*}
$$

Remark. Condition (2.7) is the necessary condition for the maximum of a minimum double eigenvalue if the rank of the system of vectors $f^{0}, f_{1}{ }^{1}, f_{2}{ }^{1}, f_{2}{ }^{2}$ equals 3 . If it equals 2 then we select the vectors $f^{2}, f_{2}{ }^{1}$, say, as basis and expand the vectors $f_{1}{ }^{1}, f_{2}^{2}$ in them: $f_{1}{ }^{1}=\alpha_{0} i^{2}+x_{1} f_{2}{ }^{1}$, $f_{2}{ }^{2}=\beta_{0} f^{0}+\beta_{1} f_{2}{ }^{2}$. Suiostituting these expansions into (2.5), we obtain the fullowing necessary condition instead of (2.7): $1-\alpha_{1} \beta_{1} \geq 0$.

For simplicity, below, we will assume the rank of the vector system $f^{2}, f_{1}^{4}, f_{2}{ }^{2}, f_{2}{ }^{1}$ equals 3.

If the form (2.5) is strictly positive for all non-zero k satisfying condition (1.4), then $\mu_{1} \mu_{2}<0$. Therefore, the positive-definiteness of the form (2.5) is a sufficient condition for the optimality of the parameter vector h.

However, non-zero variations of k always exist for parameter-vector dimensions $n>3$, for which the form (2.3) vanishes. In particular, if inequality (2.7) is strictly satisfied, then $L(h, k)=0$ if and only if

$$
\begin{equation*}
\left(f_{s}^{l}, k\right)=0,\left(f^{\circ}, k\right)=0, l, s=1,2 \tag{2.8}
\end{equation*}
$$

According to (2.4) and (2.2), it therefore follows that: $\mu_{1}=\mu_{2}=0$. We let K denote the set of vectors k satisfying condition (2.8).

Thus, if the necessary conditions for the extremum (2.6) and (2.7) are satisfied, where (2.7) is satisfied with the strict inequality sign, then for all allowable variations $k \nexists K$ we have $L(h, k)>0$ and $\mu_{1} \mu_{2}<0$. The form $L(h, k)=0$ only for $k \in K$. The values $\mu_{1}=$ $\mu_{2}=0$. correspond to this case. Therefore, for the variations $k \in K$ the double eigenvalue λ_{1} is not split to a first approximation and the question of the extremality of the vector $h(n>3)$ can be solved by relying on the second variations of the double eigenvalue λ_{1} in the set of variations $k \in K$.

We first determine the vector v^{1}. To do this, we represent v^{1} in the form of the expansion (1.11) in eigenvectors, we replace u^{1} by $u^{\circ}=\gamma_{1} u^{1}+\gamma_{2} u^{2}$ in (1.6), and we multiply (1.6) scalarly by $u^{i}(i=3,4, \ldots, m)$. Hence, taking $\mu=0$ into account, we find the coefficients c_{l}. We finally obtain

$$
\begin{equation*}
v^{1}=c_{1} u^{1}+c_{2} u^{2}-\sum_{l=1}^{m} \frac{\left(C_{1}(h, k) u^{\circ}, u^{l}\right)}{\lambda_{l}-\lambda_{1}} u^{l} \tag{2.9}
\end{equation*}
$$

where the constants c_{1} and c_{2} are determined from the normalization condition and are not essential to the subsequent computations.

We replace u^{1} in (1.7) by $u^{\circ}=\gamma_{1} u^{1}+\gamma_{2} u^{2}$ and multiply it successively by u^{1} and u^{2}. Taking account of (2.9) and the condition $\mu=0$, we obtain a system of linear homogeneous equations in γ_{1} and γ_{2}. From the condition that the determinant of this system equal zero we obtain a quadratic equation in η

$$
\begin{align*}
& \eta^{2}-\eta\left(\beta_{11}+\beta_{22}\right)+\beta_{11} \beta_{22}-\beta_{12}^{2}=0 \tag{2.10}\\
& \beta_{i j}=\left(C_{2}(h, k) u^{i}, u^{j}\right)- \\
& \sum_{i=3}^{m} \frac{\left(C_{1}(h, k) u^{i}, u^{l}\right)\left(C_{1}(h, k) u^{j}, u^{l}\right)}{\lambda_{i}-\lambda_{1}}, \quad i, j=1,2
\end{align*}
$$

As before, the matrices C_{1} and C_{2} are determined by relations (1.8). The roots of (2.10) are real because of the symmetry of the coefficients $\beta_{i j}$.

Therefore, the second varations of the double eigenvalue λ_{1} in the class of variations $k \equiv K$ are determined from (2.10).

Let us formulate the sufficient conditions for the extremum by assuming that the dimensionality of the vector h is greater than 3 (the case $n \leqslant 3$ is considered in /22/).

Assertion 2. Let the following conditions be satisfied: a) a double minimum eigenvalue i_{1} corresponds to the vector h satisfying condition (1.3): b) the necessary extremum conditions (2.6), (2.7) are satisfied, where (2.7) is satisfied with the strict inequality sign. Then the vector h reaches a local maximum of the minimum eigenvalue of problem (1.1) under the isoperimetric condition (1.3) if the minimum of the roots of (2.10) in the class of variations $k \in K$ is less than zero $\eta=\min \left(\eta_{1}, \eta_{2}\right)<0, k \in K$.

Proof. Because of the conditions a) and b), the form (2.5) is non-negative and equals zero only for variations k satisfying condition (2.8), i.e., for $k \in K$. Hence, it follows that $\mu_{1} \mu_{2}<0$ for $k \notin K$ and $\mu_{1}=\mu_{2}=0$ for $k \in K$. In the former case this means min (μ_{1}, $\left.\mu_{2}\right)<0$, while in the latter case the splitting of the double eigenvalue is determined by the second variations of η_{1} and η_{2}. The set of conditions min $\left(\mu_{1}, \mu_{2}\right)<0, k \notin K$ and $\min \left(\eta_{1}, \eta_{2}\right)<0, k \in$ K denotes the presence of a local maximum.

Note that the condition $\eta=\min \left(\eta_{1}, \eta_{2}\right)<0$ is known to be satisfied if

$$
\tau_{11}+\eta_{2}=\beta_{11}+\beta_{22}<0
$$

Using the expresion for $\beta_{i j}$ in (2.10) and the notation (2.3), we have

$$
\begin{equation*}
\eta_{1}+\eta_{2}=\left\langle D_{1}(h) k, k\right)-\sum_{i=1}^{m} \frac{\left(f_{1}{ }^{\prime}, k\right)^{2}+\left(f_{2}{ }^{2}, k\right)^{2}}{\lambda_{1}-\lambda_{1}} \tag{2.11}
\end{equation*}
$$

where $D_{1}(h)$ is a matrix with the components

$$
d_{s t}^{1}=\frac{1}{2} \sum_{i, j=1}^{m}\left(u_{i}^{1} u_{j}^{1}+u_{i}^{2} u_{j}^{2}\right)\left(\frac{\partial^{2} a_{i j}}{\partial h_{s} \partial h_{t}}-\lambda_{1} \frac{\partial^{2} b_{i j}}{\partial h_{s} \partial h_{i}}\right), s, t=1,2, \ldots, n
$$

Expression (2.11) is a quadratic form in the vector component k. The deduction that the vector h satisfying condition (1.3) and the strengthened conditions (2.5) and (2.7) realizes a local maximum of the minimum double eigenvalue if the quadratic form (2.11) is negativedefinite in the set $k \in K$ follows from the proved Assertion 2. The last condition is known to be satisfied if the matrix $D_{1}(h)$ is negative-definite.

In the case of a linear dependence of the matrices A and B of the problem (1.1) on the vector component h the matrix $\quad D_{1} \equiv 0$. In that case, if the rank of the system of vectors $Z_{1} \cup Z_{2}$, where $Z_{1}=\left\{f_{1}{ }^{l}\right\}, Z_{2}=\left\{f_{2}{ }^{l}\right\}(l=1, \ldots, m)$, equals n, then $\eta_{1}+\eta_{2}<0$ and the sufficient condition for the extremum is satisfied. The proof is similar to the reasoning in Sect.l.
3. We will examine the infinite-dimensional case in the example of the buckling problem for a thin elastic rod of variable section subjected to a longitudinal force λ. It is assumed that the rod cross-sections are geometrically similar and identically oriented figures. In this case the moment of inertia $I(x)=\alpha h^{2}(x)$, where $h(x)$ is the cross-sectional area, and α is a constant governed by the section geometry.

The rod deflection function $w(x)$ is determined for buckling from an eigenvalue problem written in dimensionless variables /3/

$$
\begin{equation*}
\left(h^{2} w^{\prime \prime}\right)^{\prime \prime}+\lambda w^{\prime \prime}=0, \quad 0<x<1 \tag{3.1}
\end{equation*}
$$

Let us consider two kinds of boundary conditions: "free end-clamping" and "clampingclamping"

$$
\begin{align*}
& \left(h^{2} w^{\prime \prime}\right)_{x=0}=\left[\left(h^{2} w^{\prime \prime}\right)^{\prime}+\left.\lambda w^{\prime}\right|_{x=0}=0, \quad w(1)=w^{\prime}(1)=0\right. \tag{3.2}\\
& w(0)=w^{\prime}(0)=0, \quad w(1)=w^{\prime}(1)=0 \tag{3.3}
\end{align*}
$$

For continuous functions $h(x)>0, x \in[0,1]$, it is known/13/ that the eigenvalue problem (3.1), (3.2) or (3.1), (3.3) possesses a discrete spectrum $0<\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \ldots$ with eigenfunctions $w_{i}(x)$ satisfying the orthogonality condition ($\delta_{t j}$ is the Kronecker delta)

$$
\int_{0}^{1} w_{i}^{\prime} w_{j}^{\prime} d x=\delta_{i j}, \quad i, j=1,2, \ldots
$$

If the function $h(x)$ vanishes on the boundary of the segment 10,1$]$, at the point $x=0$, say, then for positive-definiteness of the eigenvalue problem it is sufficient to require that the following integral should be bounded /13/:

$$
\begin{equation*}
\int_{0}^{1} d x \int_{x}^{1} h^{-2}(s) d s<\infty \tag{3.4}
\end{equation*}
$$

We shall assume this condition to be satisfied.
The eigenvalue problem (3.1), (3.2) or (3.1), (3.3) can be reduced to a problem with a second-order differential operator. To do this, the substitution $y=h^{2} w^{\prime \prime}$ is used /14/. Consequently, we obtain in palce of (3.1)

$$
\begin{equation*}
y^{\prime \prime}+\lambda h^{-3} y=0, \quad 0<x<1 \tag{3.5}
\end{equation*}
$$

We obtain the boundaryconditions for the function y by double integration of the equation $y^{\prime \prime}+\lambda w^{\prime \prime}=0$ using the boudary conditions (3.2) or (3.3). We hence have /14/

$$
\begin{align*}
& y(0)=0, \quad y^{\prime}(1)=(0) \tag{3.6}\\
& y^{\prime}(0)=y^{\prime}(1), \quad y(1)=y(0)+y^{\prime}(0) \tag{3.7}
\end{align*}
$$

An eigenfunction y_{i} with the same eigenvalue λ_{i} of the problem (3.5), (3.6) or (3.5), (3.7) corresponds uniquely to every eigenfunction $w_{i}(x)$ of the problem (3.1), (3.2) or (3.1), (3.3) corresponding to the eigenvalue λ_{i}, and conversely, the eigenfunction w_{i} corresponding to the same λ_{i} corresponds uniquely to each eignefunction y_{i} corresponding to the eigenvalue $\lambda_{i} \neq 0$. It hence follows that the spectra of problems (3.5), (3.6) and (3.5), (3.7) are non-negative since all the eigenvalues are positive in problems (3.1), (3.2), and (3.1), (3.3).

It can be established by direct substitution that there are no zero eigenvalues in problem (3.5), (3.6); consequently, the spectrum in problems (3.1), (3.2) and (3.5), (3.6) is completely identical.

There is a double zeroth eigenvalue $\lambda_{0}{ }^{1}=\lambda_{0}{ }^{2}=0$ in problem (3.5), (3.7)/15, 16/ to which two linearly independent eigenfunctions 1 and x correspond, and which occur because of the passage to a problem with a second-order operator.

The eigenfunctions of the problem (3.5), (3.6) and (3.5), (3.7) can be orthonormalized

$$
\begin{equation*}
\int_{0}^{1} y_{i} y_{j} h^{-2} d x=\delta_{i j} \tag{3.8}
\end{equation*}
$$

The eigenfunction system $\left\{y_{i}\right\}$ is complete in the space L_{2}^{h} of square-integrabie functions
with weight h^{-2}. The norm in this space is determined by the expression

$$
\begin{equation*}
\|v\|^{2}=\int_{0}^{1} h_{0}^{-2 y^{2} d x} \tag{3.9}
\end{equation*}
$$

We now turn to the following optimization problem: it is required to find the continuous function $h(x) \geqslant 0$ that maximizes the first (non-zero) eigenvalue λ_{1} of problem (3.5), (3.6) or (3.5), (3.7) for a constraint on the rod volume

$$
\begin{equation*}
\int_{0}^{1} h d x=1 \tag{3.10}
\end{equation*}
$$

Lagrange formulated this problem, which has been examined in many papers / $1-5,14-18 /$. It is known / 15 , 16 / that the eigenvalue λ_{1} in problem (3.5), (3.6) is always simple, whereas it may turn out to be double in problem (3.5), (3.7). We hence consider these cases separately.
4. We investigate the optimization problem with boundary conditions (3.6). It can be proved that the solution $h(x)$ satisfying first-order necessary conditions realizes a local maximum of the minimum eigenvalue of problem (3.5), (3.6) under the constraint (3.10).

For the proof we use the perturbation method and we obtain expressions for the first and second variations of a simple eigenvalue λ_{1}. We give the function $h(x)$, which could have the extremum, an increment $\varepsilon \delta{ }^{\circ}(x)$, where ε is a small positive number. Consequently, the first eigenvalue λ_{1} and the corresponding eigenfunction $y_{1}(x)$ receive the increments $/ 11 /$

$$
\lambda=\lambda_{2}+\varepsilon \mu+\varepsilon^{2} \eta+\ldots, y(x)=y_{1}(x)+\varepsilon v_{1}(x)+\varepsilon^{2} v_{2}(x)+\ldots
$$

Substituting these expansions into (3.5) and (3.6), and collecting terms of identical powers of x we obtain

$$
\begin{align*}
& y_{1}{ }^{\prime \prime}+\lambda_{1} h^{-2} y_{1}=0 \tag{4.1}\\
& v_{1}{ }^{s}+\lambda_{1} h^{-2} v_{1}=2 \lambda_{1} h^{-2} \delta h y_{1}-\mu h^{-2} y_{1} \\
& v_{2}{ }^{\prime \prime}+\lambda_{1} h^{-2} v_{2}=-6 \lambda_{1} h^{-4}(\delta h)^{2} y_{1}+2 \lambda_{1} h^{-3} \delta h v_{1}+2 h^{-3} \mu \delta h y_{1}-\mu v_{1} h^{-2}-\eta h^{-2} y_{1} \\
& y_{1}(0)=y_{1}(1)=0, v_{i}(0)=v_{i}(1)=0, \quad i=1,2
\end{align*}
$$

We mutipiply the second equation in (4.1) by $y_{1}(x)$ and integrate the result between 0 and 1. Later, integrating by parts and using the first equation in (4.1) and condition (3.8), we obtain an expression for the first variation

$$
\mu=2 \lambda_{1} \int_{0}^{1} h^{-\frac{1}{y} y_{1} \delta \delta \hbar d x} \quad\left(\int_{0}^{1} \delta h d x=0\right)
$$

where the condition in paxentheses follows from the constraint (3.10). Because of the arbitrariness of the variation $\delta \hbar$, we hence obtain the necessary optimality condition

$$
y_{1}{ }^{2}(x) h^{-3}(x)=x^{2}, x=\text { const }
$$

Equations (3.5), (3.6), (4.2) and conditions (3.8), (3.10) are for determining the unknown functions $y_{1}(x), h(x)$ and the values λ_{1}, x. The analytic solution of these equations was first obtained by Clausen /17/, see /18, 14/ also. The function $h(x)$ vanishes at the point $x=0$, where we have $h(x) \sim x^{2 / 2}$ in the neighbourhood of $x=0$, consequently, condition (3.4) is satisfied.

We will now derive on expression for the second variation η of the eigenvalue λ_{2}. For this we first represent the function $y_{2}(x)$ as an expansion in eigenfunctions $y_{i}(x)$, i.e., $v_{1}(x)=c_{1} y_{1}(x)+\ldots$ The coefficients $a_{l}(l=1,2, \ldots)$ are found from the second equation in (4.1) by muitiplying it by $f(x)(i=2,3, \ldots)$, integrating between O and I and using (3.8) and the first equation in (4.1). We consequently have

$$
\begin{align*}
& v_{1}(x)=c_{1} y_{1}(x)-2 \lambda_{1} \sum_{l=2}^{\infty}\left(\lambda_{l}-\lambda_{1}\right)^{-1} g_{l 1} y_{l}(x) \tag{4.3}\\
& g_{1 s}=\int_{0}^{1} h^{-s} y_{s} y_{l} \delta h d x \quad(l, s=1,2, \ldots)
\end{align*}
$$

The coefficient c_{1}. is found from the normalization conaition and does not affect the subsequont computations.

By using (4.3) and taking account of the condition $\mu=0$ we obtain an expression for the second variation from the third equation of (4.1)

$$
\begin{equation*}
\eta=-6 \lambda_{1} \int_{v}^{1} h^{-4} y_{1}^{2}(\partial h)^{2} d x-4 \lambda_{1}^{2} \sum_{i=2}^{\infty}\left(\lambda_{i}-\lambda_{1}\right)^{-1} g_{h L^{2}} \tag{4.4}
\end{equation*}
$$

Since $\lambda_{1}>\lambda_{1}>0(I=2,3, \ldots)$, the second term in (4.4) is non-positive. Using condition (4.2), we obtain the estimate

$$
\eta \leqslant-6 \lambda_{1} y^{2} \int_{0}^{1} h^{-1}(\delta h)^{2} d x<0
$$

The integral in (4.5) is the square of the norm $\| \delta h_{p^{*}}$ in the space of square-integrable functions with weight $p=h^{-1}(x)$. The negativity of the second variation denotes that the function $h(x)$ satisfying the necessary condition for an extremum realizes the local maximum of λ_{1} under the condition (3,10), which it was required to prove.

Another proof of the optimality of λ_{1}, based on application of the Holder inequality, is given in /14/. Proof of the optimality of solutions satisfying the necessary conditions for an extremum are presented in $/ 19 /$ for sandwich structures $(I(x)=\alpha h(x))$.
5. We consider the optimization problem formulated in Sect. 3 with the boundary conditions (3.7). It has been shown / $15,16 /$ that the solution of the optimization problem can be characterized by just the double eigenvalue $0<\lambda_{1}=\lambda_{3}<\lambda_{3} \leqslant \lambda_{4} \ldots$ We will prove that the function $h(x)$ satisfying the necessary conditions of the double λ_{1} realizes a local maximum of λ_{1} under the condition (3.10).

Proof. It was shown in Sect. 3 that problem (3.5), (3.7) has a double zeroth eigenvalue $\lambda_{0}=\lambda_{0}=0$ and corresponding linear eigenfunctions $y^{1}=a x+b, y_{0}=c x+d$ for any $h(x)$. It is assumed that all the eigenfunctions are orthonormalized

$$
\begin{equation*}
\int_{0}^{1} y_{0}{ }^{3} y_{0}{ }^{l} h^{-2} d x=\delta_{s l}, \quad s, l=1,2 ; \quad \int_{0}^{1} y_{i} y_{j} h^{-2} d x=\delta_{i j} \quad i, j=1,2, \ldots \tag{5.1}
\end{equation*}
$$

We give the function $h(x)$, which could have an extremum, an increment $8 \delta h(x)$ and we apply the perturbation method. Exactly as in sect. 2 , the first variations μ_{1} and μ_{2} of the double λ_{1} are found from the solution of the quadratic equation

$$
\begin{align*}
& \mu^{2}-\mu\left(\beta_{11}+\beta_{22}\right)+\beta_{11} \beta_{22}-\beta_{12}^{2}=0 \tag{5.2}\\
& \beta_{i j}=2 \lambda_{1} \int_{0}^{1} h^{-3} y_{i} y_{j} \delta h d x, \quad i, j=1,2
\end{align*}
$$

If $h(x)$ reaches the maximum of the double λ_{1}, then $\mu_{1} \mu_{2}=\beta_{11} \beta_{22}-\beta_{12}{ }^{2} \leqslant 0$ is necessary for any variations δ satisfying (3.10). Hence follows the linear dependence of the functions /12/

$$
\begin{align*}
& f_{0}=1, f_{1}=h^{-3} y_{1}^{2}, f_{2}=h^{-3} y_{2}^{2}, f_{3}=h^{-3} y_{1} y_{2} \tag{5.3}\\
& \xi_{0} f_{0}+\xi_{1} f_{1}+\xi_{2} f_{2}+\xi_{3} f_{3}=0
\end{align*}
$$

with coefficient ξ_{i} satisfying the inequality (2.7).
The functions h, y_{1}, y_{2} and the constants $\xi_{i, i}=0,1,2,3$, realizing the extremum of the optimization problem can be found from system (3.5), (3.7) written for y_{1}, λ_{1} and y_{2}, $\lambda_{2}=\lambda_{1}$ and the relationships (5.3), (2.7), and (3.10). The analytic solution of the system of these equations was obtained in $/ 15,16 /$, where it is shown that the function $h(x)>0, x \in\{0,1]$,

If inequality (2.7) is satisfied strictly, then the form $\beta_{11} \beta_{22}-\beta_{12}^{2}$ equals zero if and only if the variations δ satisfy the conditions $\beta_{11}=\beta_{22}=\beta_{12}=0$ and the conditions (3.10), i.e.

$$
\begin{equation*}
\int_{0}^{1} f_{i} \delta h d x=0 ; \quad t=0,1,2,3 \tag{5.5}
\end{equation*}
$$

We let Δ denote the class of variations oh satisfying (5.5). It follows from (5.2) that $\mu_{1}=\mu_{2}=0$ if $\delta h_{1} \in \Delta$. Othexwise $(\delta h \not \Delta) \mu_{1} \mu_{2}<0$. This means that these variations ($\delta h \neq \Delta$) reach the maximum of double λ_{1} since here $\min \left(\mu_{1}, \mu_{2}\right)<0$.

Thus, to prove the optimality of $h(x)$, the secona variations of the double h_{i} should be examined in the class $8 h e \Delta$ and it is seen that at least one of these variations is strictly negative.

Exactly as in sect. 2 , the second variations of η_{1} and η_{2} are determined for $\delta h=A$ from the solution of the quadratic equation

$$
\begin{equation*}
\eta^{2}-\eta\left(\gamma_{11}+\gamma_{22}\right)+\gamma_{11} \gamma_{2 z}-\gamma_{12}^{2}=0 \tag{5.6}
\end{equation*}
$$

The minimum root of (5.6) will be negative if $\eta_{1}+\eta_{2}<0$. The sum $\eta_{1}+\eta_{2}$ is represented in the class of variations $\delta h e \Delta$ by the expression

$$
\begin{align*}
& \eta_{1}+\eta_{2}=K_{1}+K_{2} \tag{5.7}\\
& K_{1}=\lambda_{1} \sum_{i=1}^{2}\left[-6 \int_{0}^{1} y_{i}^{2 h^{-4}}(\delta h)^{2} d x+4 \sum_{j=1}^{2}\left(\int_{0}^{1} y_{0}^{j} y_{i} h^{-3} \delta h d x\right)^{2}\right] \\
& K_{2}=-4 \lambda_{1}^{2} \sum_{l=3}^{\infty} \sum_{i=1}^{2}\left(\lambda_{l}-\lambda_{1}\right)^{-1} g_{i t}^{2}
\end{align*}
$$

Because $\lambda_{1}>\lambda_{1}(2=3,4, \ldots) K_{2} \leqslant 0$. Let us estimate K_{1}. For this we introduce the auxiliary functions $\psi_{1}(x)=y_{1} h^{-1} \delta h$ and $\psi_{2}(x)=y_{3} h^{-1} \delta h$. Because of the continuity of the functions
$y_{1}, y_{2}, \delta h, h \geqslant \delta>0$, the functions ψ_{1}, ψ_{2} belong to the space $L_{2}{ }^{h}$ of square-summable functions with weight h^{-2}

$$
\begin{equation*}
\left\|\psi_{i}\right\|^{2}=\int_{0}^{1} y_{i}{ }^{2} h^{-a}(\delta h)^{2} d x<+\infty \tag{5.8}
\end{equation*}
$$

The system of eigenfunctions $y_{i}(x)$ of problem (3.5), (3.7) is complete in $L_{2}{ }^{\boldsymbol{h}}$; we consequently expand $\psi_{i}(x)$ in it

$$
\Psi_{i}(x)=d_{0}^{i, 1} y_{0}^{1}(x)+d_{0}^{i, 2} y_{0}^{2}(x)+\sum_{l=1}^{\infty} d_{1}^{i} y_{l}(x) \quad(i=1,2)
$$

where

$$
\begin{align*}
& d_{l}^{i}=\int_{0}^{1} \psi_{i} y_{l} h^{-2} d x=\int_{0}^{1} y_{i} y_{l} h^{-s} \delta h d x \quad(l=1,2, \ldots) \tag{5.9}\\
& d_{0}^{i j}=\int_{0}^{1} y_{0}^{j} \psi_{i} h^{-8} d x=\int_{i}^{1} y_{i} y_{0} h^{-s} \delta h d x \quad(i, j=1,2)
\end{align*}
$$

We note that the coefficients $d_{l}{ }^{1}, d_{l}{ }^{2}(l=1,2)$ equal zero because of condition (5.5).
Because of the orthonormality of the system $\left\{y_{i}(x)\right\}$ we have

$$
\begin{equation*}
\left\|\psi_{i}\right\|^{2}=\left(d_{0}^{i, 1}\right)^{2}+\left(d_{0}^{i, 2}\right)^{2}+\sum_{i=0}^{\infty}\left(d_{l}^{i}\right)^{2} \quad(i=1,2) \tag{5.10}
\end{equation*}
$$

The estimate

$$
\begin{equation*}
\eta_{1}+\eta_{2} \leqslant K_{1} \leqslant-2 \lambda_{1}\left(\left\|\psi_{1}\right\|^{2}+\left\|\psi_{2}\right\|^{2}\right)=-2 \lambda_{1} \int_{0}^{1}\left(y_{1}^{2}+y_{2}^{2}\right) h^{-4}(\delta h)^{2} d x<0 \tag{5.11}
\end{equation*}
$$

follows from (5.7)-(5.10).
 square-integrable functions with weight $p=\left(y_{1}{ }^{2}+y_{2}{ }^{2}\right) h^{-4}$.

Thus, we have $\eta_{1}+\eta_{2}<0$ from (5.11), therefore, $\min \left(\eta_{1}, \eta_{2}\right)<0$ in the class $\delta h \in \Delta$, which it was required to prove.

We note that these proofs can be executed analogously for other cases of the dependence between the moment of inertia and the cross-sectional area, $I(x)=\alpha h^{3}(x)$, say, as well as for other (selfadjoint) boundary conditions of rod clamping).

The authors are grateful to V.B. Lidskii and V.M. Tikhomirov for useful discussions.

REFERENCES

1. PRAGER W., Principles of the Theory of Optimal Design of Structures /Russian translation/, Mir, Moscow, 1977.
2. BANICHUK N.V., Optimization of the Shapes of Elastic Bodies, Nauka, Moscow, 1980.
3. OLHOFF N., Optimal Design of Structures /Russian translation/, Mir, Moscow, 1981.
4. TROITSKII V.A. and PETUKHOV I.V., Optimization of the Shapes of Elastic Bodies, Nauka, Moscow, 1982.
5. OLHOFF N. and RASMUSSEN S.H., On single and bimodal optimum buckling loads of clamped columns, Internat. J. Solids and Structures, Vol.13, No.7, 1977.
 problems arising in the design of elastic structures, Izv. Akad. Nauk SSSR, Mekhan. Iverd. Tela, No.5, 1978.
6. MEDVEDEV N.G., Certain spectral features of optimal problems of variable-thickness shell stability, Dokl. Akad. Nauk Ukr. SSR, Ser.A, No.9, 1980.
7. CHOI K.K. and HAUG E.J., Optimization of structures with repeated eigenvalues, Optimization of Distributed Parameter Structures. Sijthoff and Noordhoff, Alphan aan den Rijn, 1981.
8. BLACHUT J and GAJEWSKI A., On unimodal and bimodal optimal design of funicular arches, Internat. J. Solids and Struct., Vol.17, No.7, 1981.
9. LARICHEV A.D., Finding the minimum volume of a beam on an elastic foundation for a given critical load valuc. Applied and Theoretical Investigations of structural Constructions. TSNIISK Press, Moscow, 1981.
10. COURANT R. and HILBERT D., Methods of Mathematical Physics, Vol.l /Russian translation/, Gostekhteoretizdat, Moscow-Leningrad, 1933.
11. BRATUS A.S. and SEIRANYAN A.P., Bimodal solutions in eigenvalue optimization problems, PMM, VO1.47, NO.4, 1983.
12. MIKHLIN S.G., Variational Methods in Mathematical Physics, Nauka, Moscow, 1970.
13. TADJBAKHSH I. and KELIER J.B., Strongest columns and isoperimetric inequalities for eigenvalues, Trans. ASME, Ser. E., J. Appl. Mech., Vol. 29, No.l., 1962
14. SEIRANYAN A.P., On a solution of the Lagrange problem, Dokl. Akad. Nauk SSSR, Voi. 272 No. 2, 1983.
15. SEIRANYAN A.P., On a Lagrange problem, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No. 2 , 1984.
16. CLAUSEN T., Ueber die Form architektonischer Saulen, Bull, Physico-Math. et Astronom. Acad. de St.-Petersbourg, Vol.1, 1849-1853.
17. NIKOLAI E.L., Lagrange problem and the most favourable column outline. Izv. Peterburg. Politekhn. Inst., Vol.8, No.1, 1907.
18. PRAGER W. and TAYLOR J.E., Problems of optimal structural design. Trans. ASME, Ser. E., J. Appl. Mech., Vol.35, No.1, 1968.

[^0]: *Prikl.Matem.Mekhan.,48,4,657-667,1984

