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SUFFICIENT CONDITIONS FOR AN EXTREflUM IN 
EIGENVALUE OPTIMIZATION PROBLEMS* 

A.S. BPATUS and A.P. SEIPANYAN 

Problems of maximizing the minimum eigenvalue of selfadjoint matrices and 
differential operators are considered. These problems arise when optimiz- 
ing the critical buckling force or the fundamental frequency of the 
natrual vibrations of elastic structures /l-4/. It has been shown /5--lO/ 
thattheextremal eigenvalue turns out to be multiple in a number of cases. 
The multiplicity of the critical load in maximization problems for the 
critical buckling force denotes the presence of several buckling modes for 
this load. 

Sufficient conditions for a local extremum for single and double 
eigenvalues are obtained for discrete and continuous systems. In the 
continuous case, the sufficient conditions for an extremum are derived 
using the example of a rod buckling problem. The conditions obtained 
are constructive in nature and can be utilized in different eigenvalue 
optimization problems. 

1. Consider the generalized eigenvalue problem 

A (h) u = hB (h) u (1.1) 

Here A(h) and B()I) are positive-definite symmetric m x m matrices with coefficients 
at;(h) and &ij(h), respectively, that depend continuously on the components of the parameter 

vector h of dimensions n, while u is a vector of dimensions na, and h is the eigenvalue. 
Problem (1.1) has a complete system of eigenvectors ui (i = 1, 2, . . . . m) and the eigenvalue 

sequence O<h,<kh, <... <L,,,, where we assume (6,) is the Kronecker delta) 

(z?, B (h) d) = ~5~~ (1.2) 

Here and henceforth, parentheses denote the scalar product of vectors. 
We pose the following problem: it is required to find the parameter vector h=(hI, . .( 

&J for which the minimum eigennumber h, of problem (1.1) reaches a maximum value under the 
condition 

F (h) = 0 (1.3) 

where P(h) is a certain fixed linear function of the vector argument h. 
Let h, and IL' (i = 1, 2, . . ., m) be the eigennumbers and eigenvectors of problem (1.1) cal- 

culatedforacertainh. We shall first assume that hi is a single eigenvalue. We will apply 
the result of analytic perturbation of the symmetric operator spectrum /ll/. We give the 
vector h an increment in the form of the vector Ek, k = (k,, . . . . k,,),where E is a small positive 
number. It follows from (1.3) that the vector k should satisfy the condition 

(f", k) = 0, f" = VF (1.4) 

where f" is a fixed vector giving the gradient of the function P(h). As a result of perturba- 
tion of the parameter vector, the eignnumber h, and the eigenvector u1 receive increments 
which can be written in the form 

u = 22 + t?d + &202 + 0 (eZ) 7 h = k, + E&a + eq f 0 (e3 

Substituting the expansions obtained into (1.1) and collecting terms of the zeroth, first, 
and second powers of c, we obtain 

A (h) u1 = h,B (h) u’ (1.5) 
A, (h, k) d + A (h) v’ = h,B (h) u1 + pB (h) d + LIB1 (h, k) d (1.6) 
Aa (h, k) u’ + Al (h, k) v1 + A (h) y2 = h,B (h) vz + (1.7) 
yB (h) v1 + $31 (A, k) ar' + h,B, @, k) v' + k,B, @, k) ~2 + @ (h) ~2 

Here A,(h, k), B,(h, k) are matrices with the components (Vat,, k) and (Vbl,, k) (i, j = 1, 2, 
. . ., ml, respectively, where 
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., 2) (h), Vbij = (2, . . ., 2) (h) 

&(h,k) and B~(h,k) are matrices with the components 

It is convenient to introduce the following notation (f' are vectors of dimensions n) 

C (k) = A (h) - h,B (h) (1.8) 
Ci (h, k) = di (k, k) - h,Bi (k, k), i = 1, 2 

f’ = 5 u,‘u~’ (VUij _ hlvbij) (k), l=l,...,m 
i. +I 

Here U: are components of the eigenvectors .u’, j, 1 = I, 2, . . . . m. We note that the matrices 
Ci, Ai, Bi (i = 1, 2) , and C are symmetric because of the symmetry of the matrices A and B. 

Multiplying (1.6)scalarly by the vector u',, using the symmetry of the matrices A (k) and 

B (h), conditions (1.2) and (1.5), we obtain 

p = (C, (k, k) ul, ul) = (f’, k) 

If h is a vector realizing the solution of the above optimization problem, it is necessary 
that for any vector k = (k,, . . ., k,j, the equation p = 0 should be satisfied for v", k) = 0. 
Hence we obtain 

f’ = df” (1.9) 

with a certain constant d which yields the necessary extremum condition in the problem under 
consideration for maximizing the least eigenvalue 1,. 

We assume that condition (1.9) is satisfied, and, using the equation p = 0, we can write 
(1.6) in the form 

C (k) u1 = -C, (k, k) u1 (1.10) 

where the matrix C, is defined by (1.8). 
Thevector vlcan be represented in the form of a linear combination of the vectors zL* (I = 

I,, . . ., m), i.e. 
l? = c,u’ + . . . + c,u”’ (1.11) 

Substituting this expansion into (1.10) may successively multiplyingitscalarly by the 
vector u', taking account of (1.5) and the notation (1.8), we obtain 

(1.12) 

The constant c1 is determined from the normalization condition and does not influence the 
subsequent calculations. 

We multiply (1.7) scalarly by the vector u'by using (l-5), the equation p = 0 and condi- 
tion (1.2). Finally, we obtain an expression for the second correction to the eigenvalue 

q = (C, (k k) u', u') + (C, (k k) ul, u') 

where C,and C, are defined in (1.8). We introduce the notation 

and denote by D(k) the matrix with components dit; 6, t = 1, . . . . n. From (1.12), the station- 
arity condition (f’, k) = 0, and the notation (1.8) introduced above, we have 

q=(D(k)k,k)-&$- 
,I-=2 1 

(1.13) 

Expression (1.13) determines the magnitude of the second variation of the eigenvalue h, 
for values of the parameter vector h satisfying the stationarity condition (1.9). 

Assertion 1. The sufficient condition for a local extremum of the stationary value of 
the vector h is expresSed by the inequality q (k, k)< 0 for any variations k = (k,, . . . . k) 
satisfying (1.4). 

This condition is equivalent to the condition of negative definiteness of the form (1.13) 
considered as a quadratic form of the components of the vector k on the hyperplane (f", k)= 0. 
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This condition of negative definiteness of the matrix D(h) is obviously sufficient for 
the opkimality of the stationary vector h, since the second term in (1.13) is always non- 
positive because h, < hi (1 = 2, 3, , I . . 77s). 

We will examine the special case when the dependence of the matrices A and B of problem 
(1.1) on the vector component h is linear, and hence DsO. If the rank r of the vector 
system (f'] (I= 1, 7,. ., m) equals khe dimensions of the vector h, i.e., r-= n (which is possible 
for m>, n). then q<O for any non-zero vectors k. Indeed, in this case qQ0 and 1) 11 
only for (f', k) = 0 (I = 1, 2, ., m). Because r= n, it hence follows that kr0. We hake that 
because of conditions (1.4) and (1.9), the vector k should satisfy the condition (/",k} = 0. If 

r< R. then non-zero vectors k always exist such that (fi,k)= ~(1 = 1.3, . . ..m\. In this case the 
question of an extremum is solved by including higher-order variations. Therefore, for a 
linear dependence of the matrices A and B on the vector components h, the condition r =- pi 
is-sufficient for the optimality of the stationary vector h. 

2. We will examine the case when the double eigenvalue L, = hg<&<Ah4... corresponds to 
the vector h realizing the solution of khe problem of maximizing the minimum eigenvalue of 
problem (1.1) - As in Sect.1, it is assumed that the orkhogonal eigenvectors Yi (i = 1, 2, . . ., 
mf normaZized in the Sense of (1.21 correspond to the eigenvalues h,. Any linear combina- 

is also an eigenvectox corresponding to the double value 1, = hs. 

we give the vector h an increment ek, where a is a small posikive number, and we cal- 
culatetheincrementof tiieigenvalue ill. Using the expansion k = h, f ep + e2_rl + ~(6~) and 

EC= 9 f avL + 652fO(eZ), in this case /IV, we arrive at (1.5)-(1.71 with the sole difference 
khak instead of ulwe will have u"= yLur +J@. The constants grand yn are also to he deter- 
mined form the equations of the perturbation method. 

Multiplying (1.6) scalarfy by u'and us, we obtain a system of linear homogeneous equa- 
tions in Y&and y2. Equating the determinant of this system to zexo, we arrive at a quadratic 
equation to determine tr 

P2 - (a11 f &Xl) CL + (aUe?Xs - u&%J = 0 (2.21 
eij = (C,(h, k) ui, u'), t, j = I, z 

where the matrix C;(h, k) is determined by the second equation in 11.8). Because of the sym- 
metry in the matrix C,the coefficient a%% = aplr which ensures that the rooks of (2.2) will be 
real. We introduce the n-dimensional vectors 

We note that f> =f; because of the symmetry of a<jr bij. Taking this and the notation 
(1.8) into account, we write r&&j in the form 

ai) = (f;, k), i, j = 1, 2 U"4) 

If the vector h realizes the solution of the optimization problem,* then prpa -< 0 is 
necessary, where pIand pz are the rooks of the quadrakic equation (2.2). This means that the 
minimum eigenvalue &is maximum, and allowable variations of ek do not result in its enlarge- 
ment /12/. 

Using <2.2) and 12.4) we give the condition &$& <;O the form 

L (h, k) = (/a'> kf2 - (jr"< k)&', k)> 0 (2.5) 

for any k satisfying the isoverimetric condition (1.4). As is shawn in /12/, the linear 
dependence of the vectors 

follows from (2.5) and (1.41, where & fd =O. 1, 7, 3) are constants satisfying the inequality 

Remark. Condition (2.7) is the necessary condikion for the maximum of a minimum double 
eigenvalue if the rank of the system of vectors I", i,'* let, frz equals 3. If it equals 2 then we 
select the vectors /"<fs', say, as basis and expand the vectors fl',fn" in them: /k' = "al 3 + a&". 
f22 = POP f B,iz'. Substituting these expansions into (2.5), we obtain the following necessary 
condition instead of (2.71: f - c&:~O. 

For simplicity, below, we will assume the rank of the vector SYStem r, ix’, fs”, f,’ -Pals 
3. 

If the form (2.5) is strictly positive for all non-zero k satisfyinq condition (1.41, 
then p#:,< 0. Therefore, the positive-definiteness of the form (2.5).is-a sufficient condi- 
tion for the optimaliky of the parameter vector h. 
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However, non-zero variations of k always exist for parameter-vector dimensions n>3, 
for which the form (2.3) vanishes. In particular, if inequality (2.7) is strictly satisfied, 
then L(h, k)=O if and only if 

(f,', k) = 0, (f", k) = 0, 1, S = 1, 2 (2.8) 

According to (2.4) and (2.2), it therefore follows that: pL1 = pL1 = 0. We let K denote 
the set of vectors k satisfying condition (2.8). 

Thus, if the necessary conditions for the extremum (2.6) and (2.7) are satisfied, where 
(2.7) is satisfied with the strict inequality sign, then for all allowable variations kzK 

we have L(h, k)> 0 and P+~<O. The form L(h, k) = 0 only for k= K. The values PI = 
p'p = 0. correspond to this case. Therefore, for the variations kE K the double eigenvalue 

h, is not split to a first approximation and the question of the extremality of the vector 
h(n> 3) can be solved by relying on the second variations of the double eigenvalue h, in 

the set of variations kEK. 
We first determine the vector VI. To do this, we represent v'in the form of the expan- 

sion (1.11) in eigenvectors , we replace ~llby u" = y,u'+ Y.# in (1.6), and we multiply (1.6) 
scalarly by u'(i = 3, 4, . . . . m). Hence, taking p= 0 into account, we find the coefficients 

Cl. We finally obtain 

where the constants c,and c1 are determined from the normalization condition and are not essen- 
tial to the subsequent computations. 

We replace u'in (1.7) by u" = ylu' f y& and multiply it successively by u'and uz. Taking 
account of (2.9) and the condition p-0, we obtain a system of linear homogeneous equations 
in y,and yl. From the condition that the determinant of this system equal zero we obtain a 
quadratic equation in q 

rlz - q (K&l + Bar) + B1SPI - 8122 = 0 (2.10) 

pij = (C, (h, k) ui, uj) - 

, i,j=1,2 

As before, the matrices C,and c, are determined by relations (1.8). The roots of (2.10) 
are real because of the symmetry of the coefficients pij. 

Therefore, the second varations of the double eigenvalue X, in the class of variations 
k, K are determined from (2.10). 

Let us formulate the sufficient conditions for the extremum by assuming that the dimen- 
sionality of the vector h is greater than 3 (the case n.< 3 is considered in /12/). 

Assertion 2. Let the following conditions be satisfied: a) a double minimum eigenvalue 
>1 corresponds to the vector h satisfying condition (1.3): b) the necessary extremum conditions 
(2.6), (2.7) are satisfied, where (2.7) is satisfied with the strict inequality sign. Then 
the vector h reaches a local maximum of the minimum eigenvalue of problem (1.1) under the 
isoperimetric condition (1.3) if the minimum of the roots of (2.10) in the class of variations 

k= K is less than zero q = min(ql, qz)<O, k~ K. 

Proof. Because of the conditions a) and b), the form (2.5) is non-negative and equals 
zero only for variations k satisfying condition (2.8), i.e., for kEK. Hence, it follows 
that PlPZ < 0 for ke K and p,= CL*= 0 for ke K. In the former case this means min (pl, 
1%) < 0, while in the latter case the splitting of the double eigenvalue is determined by the 
second variations of q, and Q. The set of conditions min (pl, h) <O, ke K and mis (%, rlz) < 0, k E 
R denotes the presence of a 

Note that the condition 

Using the expresion for 

local maximum. 
q = min(ql,qa)< 0 is known to be satisfied if 

rll + 'Ir = IL + hz < 0. 

pi, in (2.10) and the notation (2.3), we have 

where Dl(h) is a matrix with the components 

(2.11) 

aat+ 2 (UilUjl + U,QjS) ( _p& - x1_.& 
4. j-1 I t 

* j, s,t=l,Z ,...t R 
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Expression (2.11) is a quadratic form in the vector component k. The deduction that the 
vector h satisfying condition (1.3) and the strengthened conditions (2 .6) and (2.:) realizes 
a local maximum of the minimum doubie eigenvalueifthe quadratic form (2.11) is negative- 
definite in the set ki=: K follows from the proved Assertion 2. The last condition is known 
to be satisfied if the matrix D,(h) is negative-definite. 

In the case of a Linear dependence of the matrices A and B of the problem (1.1) on the 
vector component h the matrix D, ~0. In that case, if the rank of the system of vectors 

=% u Z,, where Z, = {fr'}, 2, = (Zz'} (I = 1, . . ., m), equals R, then 11~ -+- na<O and the sufficient 
condition fortheextremum is satisfied. The proof is similar to the reasoning in Sect.L. 

3. We will examine the infinite-dimensional case in the example OS the buckling problem 
for a thin eiastic rod of variable section subjected to a longitudinal force h. It is assumed 
that the rod cross-sections are geometrically similar and identically oriented figures. In 
this case the moment of inertia Z(x) = ahz(z), where h(s)is the cross-sectional area, and 5~ 
is a constant governed by the section geometry. 

The rod deflection function w(s) is determined for buckling from an eigenvalue problem 
written in dimensionless variables /3/ 

(h%")" + hw"" = 0, 0 <z < 1 (3.1) 

Let us consider two kinds of boundary conditions: "free end-clamping" and "clamping- 
clamping" 

(Pw")X,o = [(h%") + hw'I,=, = 0, w(l) = w' (1) = 0 (3.2) 
w (0) = UJ' (0) = 0, 20(l) = w' (1) = 0 (3.3) 

For continuous functions h(.r) > 0, x E IO, 11, it is known /13/ that the eigenvalueproblem 
(3.11, (3.2) or (3.1),(3.3)possesses adiscretespectrum O<h,<h, <kh3 <... with eigenfunctions 

Wi (Xl satisfying the orthogonality condition (6,i is the Kronecker delta) 

iv.~,'u;'ds=6~~, i,j=1,2,... 
0 

If the function h(z) vanishes on the boundary of the segment to, 11, at the point f = 0, 
say, then for positive-definiteness of the eigenvalue problem it is sufficient to require that 
the following integral should be bounded /13/: 

jdzf h-a(s)ds< c*3 (34 

We shall assume this condition to be satisfied. 
The eigenvalue problem (3.1), (3.2) or (3-l), (3.3) can be reduced to a problem with a 

second-order differential operator. To do this, the substitution y = h'w" is used /14/. 
Consequently, we obtain in palce of (3.1) 

y" + hh-?y = 0, 0 < x < 1 13.5) 

We obtain the boundaryconditions forthe function y by double integraeion of the equation 
y" f Iw" = 0 using the boudary conditions (3.2) or (3.3). We hence have /14/ 

Y (0) = 0, Y' (9) = (0) (3.6) 

Y'(o)=.Y'(*f, Y(f)==Y(O) -I- Y' (0) (3.i) 

An eigenfunction yiwith the same eigenvalue &of the problem (3.5), (3.6) or (3.51, (3.7) 
corresponds uniquely to every eigenfunction 1~1 (x) of the problem (3.1), (3.2) or (3.1), (3.3) 
corresponding to the eigenvalue hi, and conversely, the eigenfunction wicorresponding to the 
same hi corresponds uniquely to each eiqnefunction Yicorresponding to the eigenvalue ki # 0. 
It hence follows that the spectra of problems (3.5), (3.6) and (3.5), (3.7) are non-negative 
since all the eigenvaluesare positive in problems (3.1), (3.2), and (3.1), (3.3). 

It can be established by direct substitution that there are no zero eigenvalues in problem 
(3.51, (3.6); consequently, the spectrum in problems (3.1), (3.2) and (3.51, (3.6) is completely 
identical. 

There is a double zeroth eigenvalue A,L=bo*=O in problem (3.5), (3.7) /L5, l.6/ to which 
two linearly independent eigenfunctions 1 and z correspond, and which occur because of the 
passage to a problem with a second-order operator. 

The eigenfunctions of the problem (3.51, (3.6) and (3-S), (3.7) can be orthonormalized 

The etienfunction system (IJ~) is complete in the space L," of square-integrable functions 
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with weight h-2. The norm in this space is determined by the expression 

i,?l$=5~-~X? (3.9) 
P 

We now turn to the following optimizationproblem: it is required to find the continuous 
function h.(r)> 0 that maximizes the first (non-zero) eigenvalue hl of problem (3.51, (3.6) 
or (3.5), (3.7) for a constraint on the rod volume 

ihds=i (3.10) 
0 

Lagrange formulated this problem, wh&h has been examined in many papers /l-5, I%-US/. 
It is known /15, 16/ that the eigenvalue &in problem (3.5), (3.6) is always simple, whereas 
it may turn out to be double in problem (3.5), (3.7) ~ We hence consider these cases separately, 

4. We investigate the optimization problem with boundary conditions (3.6). It can be 
proved that the solution h(z)satisiying first-order necessary conditions realizes a local 
maximum of the minimum eigenvalue of problem (3.51 r (3.6) under the constraint (3.10). 

For the proof we use the perturbation method and we obtain expressions for the first and 
second variations of a simple eigenvalue h,. We give the function h(z), which could have the 
extremum, an increment &h(x), where E Ls a small positive number. Consequently, the first 
eiyenvalue hl and the corresponding eigenfunction Y&(X) receive the increments /II/ 

h=h,+e~+eZtl+ . 1 ., 1 (2) = yt (t) -I” rv, (5) -i- E%* (2) + I . 
Substituting these expansions into (3.5) and (3.61, and collecting terms of identical 

powers of 8 we obtain 
yl= 4 h$-~#, = 0 (4.1) 
y" + h,h-%, = W,h-=6hyt - @f+& 
un” -f ?pVl = -6 &h-4(6A)a yi + 2&h-%hq + 2k+'jdjhy, - pqh-= - qh-*yl 

y, (0) w y,’ (1) = 0, Vi (0) j;?: Vi’ (1) = 0, i = 1, 2 

We mutliply the second equation in (4.1) by Yl(s) and integrate the result between 0 and 
1. Later, integrating by parts and using the first equation in (4.1) and condition (3.8), we 

obtain an expression for the first variation 

where the condition in parentheses follows from the canstraint (3.10). Because of the arbitra- 
rinessof the variation 6/b, we hence obtain the necessary optimality condition 

JrIS (z)V (i) = -xz, x = coast (4.2) 

Equations (3.51, (3.6), (4.2) and conditions (3-81, 13.10) are fox determining the un- 
known functions Y1(2f.it(_$ and the values h,,~. The analytic solution of these equations was 
first obtained by Clausen /17/, see /18, 14/ also. The function h(r) vanishes at the point 
I = 0, where we have h(x)-+ a11 in the neighbourhood of z= 0, consequently, condition (3.4) 
is satisfied. 

We will now derive on expression for the second variation q of the eigenvalue .&, For 
this we first represent the function ~~(2) as an expansion in eigenfunctions ffiI4, J-*e*r 

4 @) = c,y, (2) + . . . . The coefficients =ffl= i,2,) +.I are found from the second equation in 14.X) 
by muitiplying it by yi(x) (i- 2,3,. ..fr_ integrating between 0 and 1 and using (3.8) and the 
first equation in (4.1), We consequently have 

m 

The coefficient cris found from the normalization condition and does not affect the sub- 
sequent computations. 

By using (4.3) and taking account of the condition p= 0 we obtain an expression for the 
second variation from the third equation of (4.1) 

1 OE 

?= -&\/+$,a (6k)sdr -f&* 2 (hl- &lf-'gt,;- (4.41 
; I=1 

Since hi>A,>O jr= 2,s . ...). the second term in (4.4) is non-positive. Using condition 
(-1.2), we obtain the estimate 
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,,~-Ki,~~lh-1(6k)*dr<0 / 4 . _ 

The integral in (4.5) is the square of the norm II 6h lip’ in the space of square-integrable 
functions with weight p = h-I(s). The negativity of the second variation denotes that the 
function h(x) satisfying the necessary condition for an extremum realizes the local. maximum of 

A, under the condition (3.10)) which it was required to prove. 
Another proof of the optimality of h,. based on application of the Hslder inequality, is 

given in /14/. Proof of the optimality of solutions satisfying the necessary conditions for 
an extremum are presented in /19/ for sandwich structures (I (I) = ah (z)) . 

‘5. We consider the optimization problem formulated in Sect.3 with the boundary conditions 
(3.7). It has been shown /15, 16,' that the solution of the optimization problem can be 
characterized by just the double eigenvalue O<h,= h,<h,< A,... We will prove that the func- 
tion h(~)satisfying the necessary conditions of the double h, realizes a local maximum of i,, 
under the condition (3.10). 

Proof. It was shown in Sect.3 that problem (3.5)‘ (3.7) has a double zeroth eigenvalue 
Xl,= hZ,= 0 and corresponding linear eigenfunctions #lo = m + b, tic0 = cx + d for any h(z). It 
is assumed that all the eigenfunctions are orthonormalized 

We give the function h(z), which could have an extremum, an increment e&(z) and we apply 
the perturbation method. Exactly as in Sect.2, the first variations i&l and pr of the double 
h, are found from the solution of the quadratic equation 

II' - )L (B&l + 83 + 811&1 - Bd = 0 (5.2) 

,fiij = Zh, 5 h-ay,yj6k dz. L,,=: :,2 
0 

If k(s) reaches the maximum of the double h,, then pI.pp = && - &?< 0 is necessary for 
any variations 6h satisfying (3.10). Hence follows the linear dependence of the functions 

/12/ 
f,, = 1, h = k-3y,2, fa = k-3y,2, f3 = h+yIy, (5.3) 

Sof. + flfl i- Sdz + ssfs = 0 

with coefficient ki satisfying the inequality (2.7). 
The functions h, y,, y, and the constants gi, i = 0, 1, 2. 3. realizing the extremum of the 

optimization problem can be found from system (3.5), (3.7) written for I/~. h, and y,, A, = &, and 
the relationships (5.3), (2.7), and (3.10). The analytic solution of the system of these 
equations was obtained in /15, 16/, where it is shown that the function k(z)>O,z~[O,1]. 

1f inequality (2.7) is satisfied strictly, then the form ~ll&-~lpZ equals zero if and 
only if the variations 6h satisfy the conditions on = bzl= oIr= 0 and the conditions (3 .lO), 

i.e. 

i,;&hds=O: r=0,1,2,3 (5.5) 
" 

We let A denote the class of variations 6ia satisfying (5.5). It follows from (5.2) that 

VI = IlP = 0 if 6h E A. Otherwise (6k 6G A) )11p2<0. This means that these variations 0% e A) 
reach the maximum of double h, since here min&,pn)<O, 

Thus, to prove the optimality of h(x), the second variations of the double h, should be 
examined in the class 8hcis A and it is seen that at least one of these variations is strictly 
negative. 

Exactly as in Sect.2, the second variations of ?,and q, are determined for 6h E d from 

the solution of the quadratic equation 

V - rl (YI, + Y*J + YIIYP. - 9**' = 0 (5.6) 

The minimum root of (5.6) will be negative if 9,-i- qn<O. The sum ?I + 'In is represented 
inthe class of variations 6hE A by the expression 

(5.7) 

Because X, )X,(1= Z&4,...) K&O. Let us estimate K,. For this we introduce the auxiliary 
functions qt (2) = y,h-“6k and $* (I) = y&-k5h. Because of the continuity of the functions 
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y,, y,, 6h, h>6>0, the functions $,,& belong to the space L," of square-summable functions 
with weight h-% 

,$,+[y~h-‘(&)‘ds<+m (5.8) 
0 

The system of eigenfunctions y,(t) of problem (3.5), (3.7) is complete in .&h; we con- 
sequently expand *i(z) in it 

*i (f) = d$‘y$ (z) + d:2y02 (I) + 5 dfyl (5) (i = 1, 2) 
ISI 

where 

(5.9) 

We note that the coefficients d 11, 4” (1= i.2) equal zero because of condition (5.5). 
Because of the orthonormality of the system (vi(r)) we have 

The estimate 

II$,Ip = (d~‘)*+(d~“)2+ 5 (d;)’ (i = 1.2) 
I==3 

I 

(5.10) 

rl1-t % < KI < - 24 (II @l IP + II 9: I?) = - 211s (Y? + YZ*) h-’ (W dz < 0 
b 

follows from (5.7)-(5.10). 

(5.11) I 

The integral in the last expression is the square of the norm If6hl[,* in the space of 
square-integrable functions with weight p = (yl*+ tin*) h-‘. 

Thus, we have '~~-t-q~<O from (5.11), therefore, min(q,,q,)<O in the class 6hE A, which 
it was required to prove. 

We note that these proofs can be executed analogously for other cases of the dependence 
between the moment of inertia and the cross-sectional area, 1(r) = ah3(z), say, as well as for 
other (selfadjoint) boundary conditions of rod clamping). 

1. 

2. 
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4. 

5. 

G. 

7. 

8. 

9. 

The authors are grateful to V.B. Lidskii and V.M. Tikhomirov for useful discussions. 
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